TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase

نویسندگان

  • David H. Ardell
  • Siv G. E. Andersson
چکیده

We present TFAM, an automated, statistical method to classify the identity of tRNAs. TFAM, currently optimized for bacteria, classifies initiator tRNAs and predicts the charging identity of both typical and atypical tRNAs such as suppressors with high confidence. We show statistical evidence for extensive variation in tRNA identity determinants among bacterial genomes due to variation in overall tDNA base content. With TFAM we have detected the first case of eukaryotic-like tRNA identity rules in bacteria. An alpha-proteobacterial clade encompassing Rhizobiales, Caulobacter crescentus and Silicibacter pomeroyi, unlike a sister clade containing the Rickettsiales, Zymomonas mobilis and Gluconobacter oxydans, uses the eukaryotic identity element A73 instead of the highly conserved prokaryotic element C73. We confirm divergence of bacterial histidylation rules by demonstrating perfect covariation of alpha-proteobacterial tRNA(His) acceptor stems and residues in the motif IIb tRNA-binding pocket of their histidyl-tRNA synthetases (HisRS). Phylogenomic analysis supports lateral transfer of a eukaryotic-like HisRS into the alpha-proteobacteria followed by in situ adaptation of the bacterial tDNA(His) and identity rule divergence. Our results demonstrate that TFAM is an effective tool for the bioinformatics, comparative genomics and evolutionary study of tRNA identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First enzyme of histidine biosynthesis and repression control of histidyl-transfer ribonucleic acid synthetase of Salmonella typhimurium.

The regulation of formation of histidyl-transfer ribonucleic acid (tRNA) synthetase was examined in strains of Salmonella typhimurium. When the first of the histidine-forming enzymes was wild type, the presence of 2-thiazolealanine in the growth medium prevented repression of histidyl-tRNA synthetase formation elicited by the addition of 1, 2, 4-triazole-3-alanine to these cultures. Conversely,...

متن کامل

Regulation of histidyl-transfer ribonucleic acid synthetase formation in a histidyl-transfer ribonucleic acid synthetase mutant of Salmonella typhimurium.

Control of formation of the histidyl-transfer ribonucleic acid (tRNA) synthetase with an increased K(m) for histidine was studied in a hisS mutant of Salmonella typhimurium. Histidine restriction of both the hisS and hisS(+) strains resulted in a derepression of synthesis of histidyl-tRNA synthetase. When grown in a concentration less than the K(m) (100 mug/ml) of l-histidine, the hisS mutant m...

متن کامل

Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase.

Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3'-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, ...

متن کامل

Histidine regulatory mutants in Salmonella typhimurium II. Histidine regulatory mutants having altered histidyl-tRNA synthetase.

(1) The hid’ gene of Salmonelb ty(phinzurium is the structural gene for histidyltRNA synthetase. Mutants in the hid gene have an altered histidyl-tRNA synthetase and constitute one of the four classes of histidine regulatory mutants. (2) Mutant hisS1520 has a synthetase with a 60.fold decreased affinity for histidine. This mutant has a markedly decreased growth rate on minimal medium and is de-...

متن کامل

Mapping hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase, in Escherichia coli.

The structural gene for histidyl-tRNA synthetase was localized to 53.8 min on the Escherichia coli genome. The gene order in this region was determined to be dapE-purC-upp-purG-(guaA, guaB)-hisS-glyA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006